{"id":18250,"date":"2024-03-23T11:21:55","date_gmt":"2024-03-23T11:21:55","guid":{"rendered":"https:\/\/soicau4055.minhngocxoso.com\/?p=18250"},"modified":"2024-03-23T11:21:55","modified_gmt":"2024-03-23T11:21:55","slug":"dan-de-mb-hom-nay-tong-dac-biet-hieu-qua","status":"publish","type":"post","link":"https:\/\/lovipmb.com\/dan-de-mb-hom-nay-tong-dac-biet-hieu-qua\/","title":{"rendered":"D\u00e0n de MB h\u00f4m nay t\u1ed5ng \u0111\u1eb7c bi\u1ec7t hi\u1ec7u qu\u1ea3"},"content":{"rendered":"
N\u1ed9i dung b\u00e0i vi\u1ebft<\/p>\n
Lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t<\/strong> l\u00e0 m\u1ed9t trong nh\u1eefng ph\u01b0\u01a1ng ph\u00e1p soi c\u1ea7u l\u00f4 \u0111\u1ec1 mi\u1ec1n b\u1eafc hi\u1ec7u qu\u1ea3 nh\u1ea5t. C\u00f3 th\u1ec3 d\u1ec5 d\u00e0ng gi\u00fap ng\u01b0\u1eddi ch\u01a1i t\u00ecm \u0111\u01b0\u1ee3c c\u00e1c c\u1eb7p s\u1ed1 \u0111\u1eb9p \u0111\u1ec3 \u0111\u00e1nh v\u00e0o nh\u1eefng ng\u00e0y ti\u1ebfp theo kh\u00e1 ch\u00ednh x\u00e1c. Nghe th\u00ec kh\u00e1 l\u00e0 h\u1ea5p d\u1eabn nh\u1eefng lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t l\u00e0 g\u00ec? C\u00e1ch ch\u01a1i lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t nh\u01b0 th\u1ebf n\u00e0o? Ph\u01b0\u01a1ng ph\u00e1p lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t n\u00e0o \u0111ang \u0111\u01b0\u1ee3c ng\u01b0\u1eddi ch\u01a1i tin t\u01b0\u1edfng l\u1ef1a ch\u1ecdn nh\u1ea5t? C\u00f9ng ch\u00fang t\u00f4i gi\u1ea3i \u0111\u00e1p t\u1ea5t c\u1ea3 c\u00e1c th\u1eafc m\u1eafc tr\u00ean qua b\u00e0i vi\u1ebft d\u01b0\u1edbi \u0111\u00e2y.<\/p>\n <\/p>\n Lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t \u0111\u01b0\u1ee3c hi\u1ec3u \u0111\u01a1n gi\u1ea3n l\u00e0 m\u1ed9t c\u00e1ch th\u1ef1c hi\u1ec7n d\u1ef1a tr\u00ean gi\u1ea3i \u0111\u1eb7c bi\u1ec7t v\u1ec1 c\u1ee7a k\u1ef3 m\u1edf th\u01b0\u1edfng tr\u01b0\u1edbc. Th\u1ef1c hi\u1ec7n ph\u01b0\u01a1ng ph\u00e1p lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t n\u00e0y l\u00e0 vi\u1ec7c ng\u01b0\u1eddi ch\u01a1i s\u1ebd t\u00ednh t\u1ed5ng 5 s\u1ed1 \u0111\u00e3 v\u1ec1 trong k\u1ef3 m\u1edf th\u01b0\u1edfng tr\u01b0\u1edbc \u0111\u00f3, sau \u0111\u00f3 ti\u1ebfn h\u00e0nh ph\u00e2n t\u00edch, \u0111\u00e1nh gi\u00e1 \u0111\u1ec3 lo\u1ea1i \u0111i t\u1ed5ng c\u00f3 \u00edt kh\u1ea3 n\u0103ng v\u1ec1 nh\u1ea5t.<\/p>\n Cu\u1ed1i c\u00f9ng ch\u1ecdn nh\u1eefng c\u1ea7u c\u00f3 t\u1ed5ng l\u00e0 c\u00e1c t\u1ed5ng kh\u00f4ng b\u1ecb lo\u1ea1i \u0111\u1ec3 c\u01b0\u1ee3c. C\u00e1c c\u1ea7u n\u00e0y s\u1ebd l\u00e0 nh\u1eefng c\u1ea7u l\u00f4 c\u00f3 x\u00e1c su\u1ea5t v\u1ec1 cao nh\u1ea5t trong b\u1ea3ng k\u1ebft qu\u1ea3.<\/p>\n Lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t trong soi c\u1ea7u MB<\/em><\/p>\n C\u00f3 r\u1ea5t nhi\u1ec1u c\u00e1c ph\u01b0\u01a1ng ph\u00e1p th\u1ef1c hi\u1ec7n kh\u00e1c nhau \u0111\u1ec3 x\u00e1c \u0111\u1ecbnh ra c\u1ea7u loto \u0111\u1eb9p nh\u1ea5t, c\u00f3 kh\u1ea3 n\u0103ng v\u1ec1 nhi\u1ec1u nh\u1ea5t \u0111\u1ec1 \u0111\u00e1nh h\u00e0ng ng\u00e0y d\u1ef1a v\u00e0o lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t. M\u1eddi b\u1ea1n tham kh\u1ea3o c\u1ee5 th\u1ec3 chi ti\u1ebft ngay sau \u0111\u00e2y:<\/p>\n Ph\u01b0\u01a1ng ph\u00e1p soi c\u1ea7u loto MB n\u00e0y \u0111\u01b0\u1ee3c r\u1ea5t nhi\u1ec1u anh em l\u00f4 \u0111\u1ec1 th\u1ee7 \u01b0a chu\u1ed9ng v\u00e0 \u00e1p d\u1ee5ng ph\u1ed5 bi\u1ebfn. Mu\u1ed1n th\u1ef1c hi\u1ec7n c\u00e1ch lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t n\u00e0y, ng\u01b0\u1eddi ch\u01a1i c\u1ea7n ti\u1ebfn h\u00e0nh theo c\u00e1c b\u01b0\u1edbc sau:<\/p>\n K\u1ebft qu\u1ea3 gi\u1ea3i \u0111\u1eb7c bi\u1ec7t k\u1ef3 quay tr\u01b0\u1edbc v\u1ec1 l\u00e0 ABCDE<\/p>\n L\u1ea5y: A + B + C + D + E = XY<\/p>\n \u2013 N\u1ebfu XY > 10 th\u00ec lo\u1ea1i t\u1ed5ng s\u1ed1 h\u00e0ng \u0111\u01a1n v\u1ecb<\/p>\n \u2013 N\u1ebfu XY< 10 th\u00ec lo\u1ea1i ch\u00ednh t\u1ed5ng \u0111\u00f3<\/p>\n Sau \u0111\u00f3 ti\u1ebfp t\u1ee5c l\u1ea5y X + Y = Z<\/p>\n \u2013 N\u1ebfu Z > 10 lo\u1ea1i t\u1ed5ng h\u00e0ng \u0111\u01a1n v\u1ecb<\/p>\n \u2013 N\u1ebfu Z < 10 lo\u1ea1i t\u1ed5ng Z<\/p>\n VD: Gi\u1ea3i \u0111\u1eb7c bi\u1ec7t \u0111\u00e3 v\u1ec1 ng\u00e0y 9\/3\/2024 l\u00e0: 08814<\/p>\n Ta c\u00f3 t\u1ed5ng: 0 + 8 + 8 + 1 + 4 = 21<\/p>\n V\u1eady lo\u1ea1i t\u1ed5ng 1 v\u00e0 t\u1ed5ng 3<\/p>\n Xem th\u00eam: C\u00e1ch soi c\u1ea7u \u0110B mi\u1ec1n B\u1eafc h\u00f4m nay \u2013 C\u1ea7u \u0111\u1ec1 ch\u1ea1y 3 ng\u00e0y \u1ed5n \u0111\u1ecbnh nh\u1ea5t<\/strong><\/p>\n V\u1edbi c\u00e1ch soi c\u1ea7u mi\u1ec1n B\u1eafc n\u00e0y th\u00ec anh em c\u1ea7n s\u1eed d\u1ee5ng s\u1ed1 \u0111\u1ea7u v\u00e0 s\u1ed1 \u0111u\u00f4i \u0111\u00e3 v\u1ec1 trong gi\u1ea3i nh\u1ea5t \u0111\u1ec3 c\u1ed9ng l\u1ea5y t\u1ed5ng. C\u00e1c b\u01b0\u1edbc m\u00e0 ng\u01b0\u1eddi ch\u01a1i c\u1ea7n th\u1ef1c hi\u1ec7n nh\u01b0 sau:<\/p>\n Gi\u1ea3i nh\u1ea5t v\u1ec1 l\u00e0 AxxxB<\/p>\n L\u1ea5y: A + B = C<\/p>\n \u2013 C < 10 lo\u1ea1i t\u1ed5ng C<\/p>\n \u2013 C > 10 lo\u1ea1i t\u1ed5ng h\u00e0ng \u0111\u01a1n v\u1ecb<\/p>\n VD: Gi\u1ea3i nh\u1ea5t v\u1ec1 ng\u00e0y 9\/3\/2024 l\u00e0 51236<\/p>\n L\u1ea5y 5 + 6 = 11<\/p>\n V\u1eady lo\u1ea1i t\u1ed5ng 1 v\u00e0 t\u1ed5ng 2.<\/p>\n Tham kh\u1ea3o th\u00eam: D\u1ef1 \u0111o\u00e1n \u0111\u1ea7u \u0111u\u00f4i MB h\u00f4m nay \u2013 C\u00e1ch soi c\u1ea7u \u0111\u1ea7u \u0111u\u00f4i mi\u1ec1n B\u1eafc chu\u1ea9n<\/strong><\/p>\n <\/p>\n Th\u1ef1c hi\u1ec7n ph\u01b0\u01a1ng ph\u00e1p lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t n\u00e0y \u0111\u01a1n gi\u1ea3n l\u00e0 vi\u1ec7c ng\u01b0\u1eddi ch\u01a1i l\u1ea5y t\u1ed5ng 3 s\u1ed1 cu\u1ed1i v\u1ec1 trong gi\u1ea3i \u0111\u1eb7c bi\u1ec7t sau \u0111\u00f3 tr\u1eeb \u0111i 1 \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3.<\/p>\n N\u1ebfu t\u1ed5ng l\u1edbn h\u01a1n 10 ta lo\u1ea1i t\u1ed5ng s\u1ed1 \u1edf h\u00e0ng \u0111\u01a1n v\u1ecb v\u00e0 t\u1ed5ng 2 s\u1ed1 \u0111\u00f3<\/p>\n N\u1ebfu t\u1ed5ng nh\u1ecf h\u01a1n 10 ta lo\u1ea1i t\u1ed5ng ch\u00ednh s\u1ed1 \u0111\u00f3.<\/p>\n VD: Ng\u00e0y 10\/3\/2024, ta c\u00f3 gi\u1ea3i \u0111\u1eb7c bi\u1ec7t \u0111\u00e3 v\u1ec1 l\u00e0: 09557<\/p>\n Ta c\u00f3 t\u1ed5ng: 5 + 5 + 7 = 17 \u2013 1 = 16<\/p>\n V\u1eady lo\u1ea1i t\u1ed5ng 6 v\u00e0 t\u1ed5ng 7<\/p>\n V\u1edbi ph\u01b0\u01a1ng ph\u00e1p soi c\u1ea7u mi\u1ec1n B\u1eafc n\u00e0y, th\u00ec ng\u01b0\u1eddi ch\u01a1i c\u0169ng s\u1ebd th\u1ef1c hi\u1ec7n t\u01b0\u01a1ng t\u1ef1 nh\u01b0 v\u1edbi c\u00e1ch tr\u00ean:<\/p>\n C\u1ee5 th\u1ec3 nh\u01b0 sau: K\u1ebft qu\u1ea3 gi\u1ea3i nh\u1ea5t v\u1ec1 l\u00e0 AxxxB<\/p>\n L\u1ea5y A + B = CD \u2013 1 = EF<\/p>\n N\u1ebfu EF < 10 lo\u1ea1i t\u1ed5ng F<\/p>\n N\u1ebfu EF > 10 lo\u1ea1i t\u1ed5ng s\u1ed1 \u1edf h\u00e0ng \u0111\u01a1n v\u1ecb v\u00e0 t\u1ed5ng E + F<\/p>\n C\u00e1ch lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t n\u00e0y, b\u1ea1n c\u1ea7n l\u1ea5y s\u1ed1 \u0111\u1ea7u c\u1ee7a t\u1ea5t c\u1ea3 c\u00e1c gi\u1ea3i v\u1ec1 trong b\u1ea3ng k\u1ebft qu\u1ea3 t\u1eeb gi\u1ea3i 1 \u0111\u1ebfn gi\u1ea3i 7.<\/p>\n Sau \u0111\u00f3 anh em c\u1ea7n xem x\u00e9t m\u1ed9t s\u1ed1 l\u01b0u \u00fd sau \u0111\u1ec3 soi c\u1ea7u MB \u0111\u01b0\u1ee3c ch\u00ednh x\u00e1c:<\/p>\n \u2013 N\u1ebfu k\u1ebft qu\u1ea3 nh\u1ecf h\u01a1n 10 th\u00ec lo\u1ea1i t\u1ed5ng \u0111\u00f3<\/p>\n \u2013 N\u1ebfu k\u1ebft qu\u1ea3 l\u1edbn h\u01a1n 10 lo\u1ea1i t\u1ed5ng h\u00e0ng \u0111\u01a1n v\u1ecb v\u00e0 t\u1ed5ng c\u1ee7a 2 s\u1ed1 \u0111\u00f3.<\/p>\n VD: Ng\u00e0y 8\/3\/2024 s\u1ed1 \u0111\u1ea7u t\u1eeb gi\u1ea3i 1 \u0111\u1ebfn gi\u1ea3i 7 v\u1ec1 l\u1ea7n l\u01b0\u1ee3t l\u00e0 6, 2, 2, 5, 6, 3, 0, 1, 8<\/p>\n C\u1ed9ng t\u1ea5t c\u1ea3 ta \u0111\u01b0\u1ee3c: 6 + 2 + 2 + 5 + 6 + 1 + 3 + 0 + 8 = 33<\/p>\n V\u1eady lo\u1ea1i t\u1ed5ng 3 v\u00e0 t\u1ed5ng 6<\/p>\n Ph\u01b0\u01a1ng ph\u00e1p soi c\u1ea7u mi\u1ec1n B\u1eafc lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t theo c\u00e1ch n\u00e0y, ng\u01b0\u1eddi ch\u01a1i s\u1ebd d\u1ef1a v\u00e0o quy lu\u1eadt pascal \u0111\u1ec3 x\u00e1c \u0111\u1ecbnh t\u1ed5ng lo\u1ea1i<\/p>\n Th\u1ef1c hi\u1ec7n ph\u01b0\u01a1ng ph\u00e1p lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t n\u00e0y, ng\u01b0\u1eddi ch\u01a1i l\u1ea5y k\u1ebft qu\u1ea3 v\u1ec1 gi\u1ea3i \u0111\u1eb7c bi\u1ec7t v\u00e0 gi\u1ea3i nh\u1ea5t gh\u00e9p l\u1ea1i v\u1edbi nhau, Sau \u0111\u00f3 ti\u1ebfn h\u00e0nh c\u1ed9ng 2 s\u1ed1 c\u1ea1nh nhau l\u1ea1i v\u1edbi nhau, cho \u0111\u1ebfn khi k\u1ebft qu\u1ea3 v\u1ec1 l\u00e0 m\u1ed9t s\u1ed1 c\u00f3 hai ch\u1eef s\u1ed1.<\/p>\n N\u1ebfu k\u1ebft qu\u1ea3 thu v\u1ec1 l\u00e0 m\u1ed9t s\u1ed1 nh\u1ecf h\u01a1n 10 th\u00ec lo\u1ea1i b\u1ecf t\u1ed5ng \u0111\u1eb7c bi\u1ec7t l\u00e0 s\u1ed1 h\u00e0ng \u0111\u01a1n v\u1ecb.<\/p>\n Tham kh\u1ea3o: Ph\u01b0\u01a1ng ph\u00e1p soi c\u1ea7u pascal h\u00f4m nay chu\u1ea9n nh\u1ea5t<\/strong><\/p>\n Ph\u01b0\u01a1ng ph\u00e1p lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t trong soi c\u1ea7u mi\u1ec1n B\u1eafc<\/em><\/p>\nLo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t \u0111\u01b0\u1ee3c hi\u1ec3u l\u00e0 g\u00ec?<\/strong><\/h2>\n
6 ph\u01b0\u01a1ng ph\u00e1p soi c\u1ea7u mi\u1ec1n B\u1eafc b\u1eb1ng lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t hi\u1ec7u qu\u1ea3<\/strong><\/h2>\n
C\u1ed9ng d\u1ed3n<\/strong><\/h3>\n
C\u1ed9ng \u0111\u1ea7u \u0111u\u00f4i gi\u1ea3i nh\u1ea5t<\/strong><\/h3>\n
Ph\u01b0\u01a1ng ph\u00e1p c\u1ed9ng 3 s\u1ed1 tr\u1eeb 1 s\u1ed1<\/strong><\/h3>\n
Lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t theo \u0111\u1ea7u \u0111u\u00f4i gi\u1ea3i nh\u1ea5t tr\u1eeb 1<\/strong><\/h3>\n
Ph\u01b0\u01a1ng ph\u00e1p c\u1ed9ng \u0111\u1ea7u t\u1eeb gi\u1ea3i nh\u1ea5t \u0111\u1ebfn gi\u1ea3i 7<\/strong><\/h3>\n
Lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t b\u1eb1ng ph\u01b0\u01a1ng ph\u00e1p Pascal<\/strong><\/h3>\n
\u01afu nh\u01b0\u1ee3c \u0111i\u1ec3m c\u1ee7a ph\u01b0\u01a1ng ph\u00e1p lo\u1ea1i t\u1ed5ng \u0111\u1eb7c bi\u1ec7t<\/strong><\/h2>\n